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A Consistent Grid Coupling Method
for Lattice-Boltzmann Schemes
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A method of coupling grids of different mesh size is developed for classical
Lattice-Boltzmann (LB) algorithms on uniform grids. The approach is based
on an asymptotic analysis revealing suitable quantities equalized along the
grid interfaces for exchanging information between the subgrids. In contrast to
other couplings the method works without overlap zones. Moreover the grid
velocity (Mach number) is not kept constant, as the time step depends not
linearly but quadratically on the grid spacing. To illustrate the basic idea we
use a simple LB algorithm solving the advection-diffusion equation. The pro-
posed grid coupling is validated by numerical convergence studies indicating,
that the coupling does not affect the second-order convergence behavior of the
LB algorithm which is observed on uniform grids. In order to demonstrate its
principal applicability to other LB models, the coupling is generalized to the
standard D2P9 model for (Navier-)Stokes flow and tested numerically. As we
use analytic tools different from the Chapman-Enskog expansion, the theoreti-
cal background material is given in two appendices. In particular, the results of
numerical experiments are confirmed with a consistency analysis.

KEY WORDS: Lattice-Boltzmann; asymptotic analysis; grid coupling; local
refinement.

1. INTRODUCTION

For more than one and a half decades Lattice-Boltzmann (LB) schemes
have been developed mainly for fluid flow simulations (cf. refs. 1 and 2).
Although they are not yet as much established as conventional solvers
of finite-difference or finite-element type, they possess already a consider-
able popularity in numerical engineering. The origin of LB schemes goes
back to a special class of cellular automata (lattice-gas); but they are also
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strongly inspired by statistical physics and can be interpreted as a proce-
dure to mimic the motion of virtual fluid particles according to physically
motivated rules. In fact, the parallel to the kinetics of gases constitutes a
certain originality of LB methods.

Classical LB schemes rely on uniform grids that are cubic in the
most popular cases. This excludes a priori the possibility of local grid
refinement, which has been successfully applied since long in the context
of many other schemes. Grid coupling offers a possibility to overcome
this drawback. The principal idea consists in dividing the computational
domain into uniformly discretized subregions, where each subdomain can
have a different mesh size. In those subdomains where the numerical error
is expected to be high, a fine grid is advantageous, whereas at other places
a coarser grid is sufficient and makes the code faster. Along the interfaces
the subgrids have to exchange information. This turns out to be a subtle
task as the LB algorithm introduces artificial quantities as primary vari-
ables. These so-called populations vary in the first order with respect to
the grid size h. If we do not want to spoil the second order accuracy of
the LB algorithm on uniform grids, we can not simply exchange the pop-
ulations at the grid interfaces, since this would generate an error of first
order in h (confer last paragraph of Appendix B).

One possibility of grid coupling is suggested in three papers by
Filippova and Hänel.(3−5) This approach is also taken up by other authors
in more recent publications as refs. 6–8. The population function is split
into a grid-independent equilibrium part and an grid-dependent non-equi-
librium part given as the population minus the equilibrium. This yields
approximately the first-order of the Chapman-Enskog expansion. Because
of its grid-dependence, the non-equilibrium part has to be transformed
from one grid to another by multiplication with a suitable factor (see
ref. 4). In ref. 5 this condition is also related to the continuity of macro-
scopic (physical) quantities across the interface. As the computation of the
equilibrium requires the knowledge of all populations, this approach works
only with overlapping subgrids, such that any interface node can be associ-
ated with a (virtual) partner node of the other grid, where all populations
are known.

In contrast, our approach is directly motivated by the continuity of
macroscopic quantities at the interface, as they should not “feel” the arti-
ficial transition from one subgrid to the other. As the macroscopic quanti-
ties depend always linearly on the populations (moment functionals), this
leads immediately to equations, that can be considered as a linear system
for the unknown populations on adjacent subgrids. Therefore the coupling
works with a sharp interface, i.e. no overlapping is required.
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Unlike the cited papers we respect strictly the diffusive scaling.
Besides the structural parameter θ of the equilibrium distribution, the
only independent parameter being introduced by the LB discretization
is the grid spacing h. The BGK relaxation parameter ω (collision fre-
quency) depends exclusively on the physical parameter ν (diffusivity/vis-
cosity) and not on h (θ is regarded as fixed). Hence ω does not vary
from subgrid to subgrid. Another consequence, that distinguishes our cou-
pling from existing ones, consists in the quadratical growth of time steps
on refined subgrids: if the grid spacing is diminished by a factor of r,
then r2 iterations on the refined grid correspond to one iteration on the
original grid. This means, that the grid velocity (grid spacing/time step) is
not constant throughout the whole mesh but is increased on the refined
subgrids by the factor r.

2. BRIEF DESCRIPTION OF LB SCHEMES AND THEIR ASYMPTOTIC

ANALYSIS

The LB methods provide a class of explicit numerical schemes for
solving certain initial boundary value problems in the field of partial
differential equations. The specific PDE problem to be solved by the LB
algorithm is referred to as the target problem. Typical examples are the
Stokes and Navier-Stokes equation or the diffusion-advection equation.
Quantities that are directly related to the solution of the target problem
are called macroscopic quantities. Unlike most finite-difference or finite-
elements methods, LB schemes do not use macroscopic quantities like the
solution of the target problem as their primary variables.

Based on a strongly simplified particle dynamics, a LB method is
essentially characterized by its finite, normalized (w.r.t. the ‖ · ‖∞-norm)
velocity space S. In the case of a cubic grid in the d-dimensional space R

d

it is a subset of {−1,0,1}d , satisfying certain symmetries (e.g. invariance
under reflection at the origin). As S models the continuous velocity space
of the Boltzmann equation, it is often apostrophized as the model. In
order to distinguish them we use the shortcut DdP(#S), where D stands
for the number of spatial dimensions d and P for the number of populations,
i.e. the number of discrete velocities #S.

The set of real-valued functions over S is a vector space F , which
can be identified with R

#S and whose elements are denoted by sans-serif
characters. The most prominent example is the population function Fh,
appearing in the LB equation as its unknown and primary variable. Note
that the index h indicates its grid dependence concerning its domain of
definition as well as its numerical value. Fh is considered as an F-valued
function over the h-dependent space and time grid. So we write it with
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either two or three arguments depending on whether we have the whole
#S-tuple in mind or just the component (population) for some s ∈ S. In
allusion to the phase-space density occurring in the Boltzmann equation,
the populations might be interpreted as pseudo-densities of #S different
types of particles. The velocities of these particles are given as h-dependent
multiples of the elements in S.

The scalar product of m,w ∈F is defined by 〈m,w〉 :=∑
s∈S msws. If

m is a polynomial in s, then Mh :=〈Fh,m〉 is called the associated moment.
These quantities are of particular interest, since they approximate the mac-
roscopic quantities (solution, derivatives, fluxes etc.) for suitably chosen m.

Adopting the diffusive scaling, the time increment per iteration is
defined as the squared grid size. So, the temporal index n is associated
with the time nh2, while the spatial multiindex i ∈ Z

d corresponds to the
node at the position hi. The evolution of the population function Fh is
determined by the (discrete) LB equation with a BGK collision operator.

Fh(n+1, i + s, s)=Fh(n, i, s)+ω
[
Eh

(
Fh(n, i)

)−Fh(n, i)
]

s +h2Q(n, i, s)

(1)

The relaxation parameter ω is related to a parameter of the target equa-
tion. Q is a known source term, that does not depend numerically on h.
An important role comes up to the equilibrium operator Eh: F →F . Usu-
ally it is given in terms of a linear or non-linear function of one or several
moments, and therefore it depends only indirectly on the population func-
tion. Note that the evaluation of the equilibrium requires the knowledge
of all #S populations; that is why the equations for different populations
are coupled with one another.

In order to start the algorithm described by (1), Fh is initialized in
a special way by means of the initial data of the target problem (see for
instance Eq. (8)). Furthermore the LB equation must be supplemented by
boundary conditions; for our purpose, however, periodic boundary condi-
tions are sufficient.

Since we are interested in the behavior of a numerical scheme for the
discretization parameter h tending to zero, it is reasonable to analyze it
with asymptotic techniques. For this, the Chapman-Enskog expansion is
still a widely acknowledged tool in the LB context. However, we use here
a simpler regular expansion with respect to the grid size h. This idea has
been presented recently in refs. 9 and 10. Let us roughly sketch the proce-
dure here. Detailed computations for several LB models will be found in
ref. 12. Assume that there are smooth, F-valued functions f(k), k∈N0, of
the non-discretized time space domain such that:
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Fh(n, i)= f(0)(nh2, ih)+hf(1)(nh2, ih)+h2f(2)(nh2, ih)+· · · (2)

We insert this ansatz into the LB equation and expand all terms com-
pletely with respect to h. In particular we have to replace the left hand
side of (1) by a formal Taylor expansion. This enables us to compare
coefficients leading thus to equations, that give the asymptotic orders f(k)

in terms of their locally conserved moments appearing in the equilibrium.
In this way, we see how the LB method is related to the target prob-
lem and also what macroscopic quantities are hidden behind the numerical
population function Fh and how they can be extracted. Thus we obtain
also crucial hints for the design of coupling conditions.

The reader might be referred to the Appendix A, where we show
exemplarily for the D1P3 model, that a truncated expansion in the form
of (2) exists.

3. THE GRID COUPLING ALGORITHM FOR THE D1P3 MODEL

Due to its simplicity the D1P3 model is particularly useful for the
development of new (coupling) algorithms as well as for demonstrational
purposes. The advective term in the equilibrium permits us to test the
robustness of the coupling by letting a disturbance cross the refined
zone (see benchmark II, Fig. 2). This might be interesting, since a sim-
ple standard benchmark like the Poiseuille flow is only driven by diffu-
sive, respectively, viscous effects. Moreover the Poiseuille flow is as well
one-dimensional in its character.

Our target problem will be the following initial value problem for the
diffusion-advection equation on an interval [0,L] with periodic boundary
conditions:

u(0, ·) = u0,

∂tu+a∂xu−ν∂2
xu = q.

(3)

The advection velocity a, and the diffusivity ν >0 are supposed to be con-
stants. q represents a source while the initial value is given by u0.

The finite velocity space of the D1P3 model is given by S :=
{−1,0,1} ≡ {�,0,⊕}. With 1,s ∈ F we denote the constant one-function
and the identity on S. The equilibrium operator Eh, being linear like the
target equation, is composed of a mandatory diffusive part and an advec-
tive part scaled by the grid size h; Eh acts on the nodal population vector
Fh as a kind of projector in the following way:

EhFh :=〈Fh,1〉w +ha〈Fh,1〉θsw with w := (1−s2) θ−1
θ

+ 1
2θ s2. (4)
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Thus the equilibrium depends only on the zeroth moment also denoted as
the mass moment, which corresponds to the sum of the three populations.
The algorithmic parameter θ � 1 is arbitrary but supposed to be fixed.
Note that for θ = 1 the rest population (velocity 0) is decoupled and we
obtain actually a two population model. Let us introduce two macroscopic
quantities

f := au− (ν+ 1
2θ )∂xu, (5)

g := ∂x
(
au−ν ∂xu

)
. (6)

The quantity f = f (t, x) is closely related to the physical flux, which is
obtained by omitting 1/2θ in its definition. g=g(t, x) is the derivative of
the physical flux. Observe that f and g correspond, apart from constant
factors, to the first, respectively, second derivative of u, if the advection
velocity a vanishes.

Assume the LB source term to be given by Q(n, i)=q(nh2, ih)w. The
diffusivity ν and the two LB parameters ω, θ shall be associated to each
other by the formula

ν= 1
θ

( 1
ω

− 1
2

)
. (7)

Furthermore the population function Fh is supposed to be initialized
according to the grid independent part of the equilibrium (zeroth order),
which is the standard initialization, plus additional terms (first and second
order) inhibiting strong initial layers and ensuring hence a smooth “start”.

Fh(0, i)=u(0, ih)w︸ ︷︷ ︸
0th order

+hf (0, ih)θsw
︸ ︷︷ ︸

1st order

+h2 g(0, ih) 1
ω
(1− θs2)w

︸ ︷︷ ︸
2nd order

. (8)

Under appropriate smoothness conditions we can prove the following con-
vergence results:

u(nh2, ih) = 〈
Fh(nh2, ih), 1

〉+O(h2), (9)

f (nh2, ih) = 1
h

〈
Fh(nh2, ih),s

〉+O(h2), (10)

ω
θ−1g(nh

2, ih) = 1
h2

〈
Fh(nh2, ih), s2 − 1

θ

〉+O(h2). (11)

This means that the mass moment converges quadratically to the solution
u of the diffusion-advection equation. In contrast, the first and second
moment converge to zero. However, if they are unscaled (i.e. in leading
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order grid independent) by the division with a suitable power of h, they
exhibit the very same convergence behavior to the flux-like quantity f ,
respectively, to the derivative of the flux g times the factor ω

θ−1 . A full der-
ivation of these results will be found in ref. 12 but the essential steps are
sketched also in Appendix A.

Let us now consider a configuration as depicted in Fig. 1 with a
refinement zone between ζ, ξ ∈ [0,L]. It is assumed, that the coarse grid
spacing rη with r ∈ N and the fine grid spacing η match with the length
of the subintervals. The population functions on the coarse and fine grid
are denoted by Gη and Kη, respectively. In principle, the standard LB algo-
rithm is performed independently on each of the subgrids. However, at
the interface not all populations can be updated as prescribed by the LB
equation (1), since an interfacial node has only one neighbor belonging to
its own grid. The situation is shown in more detail for the left interface
(cf. Fig. 1). Black arrows mark the populations G⊕,K�, that are filled by
the standard update rule, whereas white arrows represent the populations
G�,K⊕ remaining empty. The rest populations at the interface (not indi-
cated in the figure) are updated in the usual way. Note, that, for conve-
nience, we sometimes write the population specifiers {�,0,⊕} as indices,
suppressing instead the dependence on the grid spacing. On both subgrids
the zeroth moments should approximate the solution u of the target prob-
lem. For an ideal grid coupling we would expect the error on the coarse
grid to be r2 larger than on the fine grid due to the quadratic convergence.
So Eq. (9) should become

u = 〈Gη,1〉+O(r2η2) on the coarse subgrid,

u = 〈Kη,1〉+O(η2) on the fine subgrid.

By subtracting these equations at the interface, where u is assumed to be
continuous, we obtain

0=〈Gη,1〉−〈Kη,1〉+
=O(η2)

︷ ︸︸ ︷
O(r2η2)−O(η2),

keeping in mind that r is a constant and thus independent of η. So the
mass moments at the two coupling nodes are equal up to a term of the
order O(η2). As a first coupling condition for determining the empty pop-
ulations we could therefore impose the equality of the mass moments.
Since the committed error is then of the same order as the general discret-
ization error of the LB algorithm itself, the coupling condition should be
at least second-order consistent and not modify the quadratic convergence
rate.
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For a well behaved solution, we expect also the spatial derivative(s)
to be continuous at the artificial grid interfaces ζ, ξ . In particular, this
entails the continuity of the flux related quantity f . Arguing as above with

f = 1
rη

〈Gη,s〉+O(r2η2) on the coarse subgrid,

f = 1
η

〈Kη,s〉+O(η2) on the fine subgrid

yields a (multiplicative) jump in the first moments 〈Gη,s〉, 〈Gη,s〉 by the
factor 1/r:

1
η
〈Kη,s〉= 1

rη
〈Gη,s〉+O(η2).

The reasoning might be summarized as follows:

continuity of u
& ∂xu resp. f at interface ⇒ equality of Zeroth moment

& jump of First moment at interface.

Due to the diffusive scaling one time step on the coarse grid must cor-
respond to r2 time steps on the fine grid numbered by 1 � k� r2 (confer
Fig. 1, right sketch). Thus, there are r2 −1 intermediate time steps on the
fine grid, where necessary values for the coarse grid populations are miss-
ing. To overcome this lack, we apply linear interpolation in time. For j ∈
{I ζη , I ξη } (indices of the coarse grid interface nodes) we abbreviate:

G̃η

(
r2(n−1)+k, j, s) := r2−k

r2 Gη(n−1, j, s)+ k

r2 Gη(n, j, s). (12)

Ignoring for brevity the cumbersome index-arguments, we are led by our
heuristic reasoning to the following implicit coupling conditions:

(i) 〈G̃η, 1〉=〈Kη, 1〉 (ii) 1
rη

〈G̃η, s〉= 1
η
〈Kη, s〉. (13)

In order to obtain explicit coupling conditions, these equations are solved
for the empty populations G̃�,K⊕ at the left interface and G̃⊕,K� at the
right interface. For the interface at ζ we get:

G̃� −K⊕ =K0 +K� − G̃0 − G̃⊕
G̃� + rK⊕︸ ︷︷ ︸

empty

= rK� + G̃⊕︸ ︷︷ ︸
known

⇒ system-matrix:
(

1 −1
1 r

)

.

(14)
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The system is uniquely solvable, since its matrix is invertible for every r ∈
N. Note, that we are interested in G̃� at the left respectively G̃⊕ at the
right interface only for k= r2.

For the trivial case r = 1, where both subgrids have equal mesh size,
we need no time interpolation; hence G̃s = Gs for s ∈ {�,0,⊕}. If the
corresponding populations at the interface are equally initialized, we can
show by induction, that we have G0 = K0 for every time step. Exploiting
this gives G� =K� and K⊕ =G⊕. Thus the populations of the coarse grid
and fine grid coupling node can be identified and the coupling algorithm
simplifies to the standard update rule. This circumstance might be quite
helpful for debugging an implementation (set r=1 and compare with the
algorithm on uniform grid).

The time loop of the LB algorithm with grid coupling takes now the
following form:

for n=1 :maximal I teration,
• memorize interface populations needed for time interpolation:

G0(n−1, I ζη ),G⊕(n−1, I ζη ),G0(n−1, I ξη ),G�(n−1, I ξη );
• standard update on coarse grid;
for k=1 : r2,

• standard update on fine grid;
• computation of the empty fine grid interface populations:

K⊕(r2(n−1)+k, J ζη ),K�(r2(n−1)+k, J ξη );
end;
• computation of the empty coarse grid interface populations:

G�(n, I
ζ
η ),G⊕(n, I

ξ
η );

end;

In order to study the behavior of the grid coupling let us consider
two test examples on the time-space domain [0, T ] × [0,L] = [0,2] × [0,1].
The analytic solutions are specified in Fig. 2. Benchmark (I) represents
a simple diffusive decay (damped sine), whereas benchmark (II) is rather
advective in its nature (traveling cosine). Disturbing effects of initial layers
are reduced by the initialization (8) up to first order for benchmark (I) and
even up to second order for benchmark (II). We set h= rη on the coarse
grid and h=η on the fine grid. Furthermore we have set θ =3 and r=2.

In Fig. 3 we present a numeric convergence study for both bench-
marks. The coupled grid with the lowest resolution is displayed in Fig. 2,
at the bottom left. This grid has been globally refined by a factor of
2,3, . . . up to 8. The error was measured in the supremum norm over the
whole time space domain. So, it represents the maximal deviation from
the exact values in all nodes and over all time steps. In both cases the
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Fig. 4. The change of total mass is displayed with respect to time for benchmark II. The
curves refer to the first (dashed), second (solid) and fourth (dashed-dotted) mesh, where on
each mesh as many iterations have been performed as are necessary to reach the time one.
The amplitude reduces with the square of the grid spacing. The gray curve corresponds to
the total mass of the exact solution u computed with the rectangle rule on the first mesh.

zeroth and first moment reveal a clear second-order convergence behavior.
The mean convergence rates have been computed by a linear least square
fit taking all eight grids into account. In Appendix B we will substantiate
these observations theoretically by a consistency analysis of the coupling
algorithm.

The total mass is defined as the integral of the solution of the tar-
get problem over the spatial domain, i.e. the interval [0,L]. Due to the
periodic boundary conditions the total mass is a conserved quantity. In
the two benchmark problems, it is equal to zero. Thanks to the symmet-
ric position of the refined grid with respect to the sinusoidal initial value
of u (benchmark I), the total mass is zero up to machine precision (less
than 10−15). Thus, the coupling algorithm does not noticeably affect the
conservation of total mass in this example.

In contrast to simulations on uniform grids, the total mass is found slightly
oscillating around the exact value in the advective case of the second bench-
mark. However this behavior is mainly related to the accuracy of the quadra-
ture rule (rectangle rule, i.e. summing up the function values multiplied by the
discretization spacing). In fact, if we integrate the exact solution also with the
rectangle rule, we obtain almost the same curve (see Fig. 4).

4. AN OUTLOOK TOWARDS GRID COUPLING FOR THE D2P9

MODEL

Let us briefly demonstrate, that the grid coupling is extendible to
other LB models too. For this we consider the D2P9 model, which has
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evolved to the prevailing LB model for simulations of plane flows. What
regards the finite velocity set S, the weight function w, etc., we refer to
ref. 2, p. 165 and also to ref. 9 for a more profound background concern-
ing the equilibrium and the moment generating polynomials. It is sufficient
for our purpose to take the linearized equilibrium

E(P,Vx,Vy) :=3w
(
Vxsx +Vysy +hP )

,

P := 1
3h 〈Fh,1〉, Vx :=〈Fh,sx〉, Vy :=〈Fh,sy〉

(15)

that is a function of the unscaled mass moment P and the two first
moments Vx,Vy . Note that sx,sy ∈ F assign to each s ∈ S its x-, respec-
tively, y-component. The target equation associated to this equilibrium is
given by the incompressible Stokes equation:

∂tv −ν�v =−∇p, ∇ · v =0.

The function p denotes the pressure and v = (vx, vy)T the velocity. They
are approximated by P and (Vx,Vy), respectively. The viscosity ν is related
to the collision frequency ω by ν= 1

3 (
1
ω

− 1
2 ).

We consider the initial value problem for the target equation in the
unit square with periodic boundary conditions. For the refinement zone,
a rectangular patch is selected with parallel sides, shifted towards the
south-west corner (see Fig. 5). Basically, the coupling algorithm can be
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Fig. 5. Left: First grid of the grid sequence used for the convergence studies. Right: Veloc-
ity field on the second grid after 400 iterations (t = 1). For the decaying eigenmode of the
Stokes operator (cf. Fig. 6), the velocity field basically does not change its appearance but
only its strength. To be better recognizable the vectors are differently scaled in the fine and
coarse grid domain.



Consistent Grid Coupling Method 63

Table I. Macroscopic quantities and their associated moment generating polyno-

mials on S. The scaling factors are used to rescale the moments, such that they

become O(1) quantities, for example: h−2〈Fh ,mφy
〉=h−2

(
h2φy +O(h4)

)=φy +O(h2)

Macroscopic quantity (τ :=ω−1) Moment generating polynomial Scaling

p Pressure mp := 1
3 h−1

vx x-component of velocity mvx :=sx 1
vy y-component of velocity mvy :=sy 1
σx :=p− 2

3 τ∂xvx mσx :=s2
x h−1

σy :=p− 2
3 τ∂yvy mσy :=s2

y h−1

σxy :=− 1
3 τ(∂yvx + ∂xvy) mσxy :=sxsy h−1

φx := 2
9 τ(τ − 1

2 )(∂
2
x vy +2∂x∂yvx) mφx :=sxs2

y − 1
3 sx h−2

φy := 2
9 τ(τ − 1

2 )(∂
2
y vx +2∂x∂yvy) mφy :=s2

xsy − 1
3 sy h−2

ψ :=− 4
9 τ(τ

2 − τ + 1
6 )∂x∂y(∂xvy + ∂yvx) mψ :=s2

xs2
y − 1

3 (s
2
x +s2

y)+ 1
9 h−3

transferred straightforwardly. However, there are two new aspects: First,
as the interface is a line instead of a single point, we encounter hanging
nodes, i.e. interface nodes on the fine grid, that have no counterpart on
the coarse grid. Therefore we introduce virtual partner nodes, whose pop-
ulations are determined by spatial interpolation (with third-order polyno-
mials) along the interface on the coarse grid. Second, corner nodes have to
be treated in a special way.

The left column of Table I contains besides vx, vy , and p six further
macroscopic quantities, that are accessible with second order accuracy by
computing the moments associated to the indicated polynomials. Note that
σx, σy and σxy would correspond to the stress tensor, if τ/3 were replaced
by ν in their definition. The last three quantities φx,φy and ψ have no
direct physical interpretation.

Considering the grid configuration (cf. Fig. 5), we have to distinguish
between regular interface nodes (including the hanging nodes) lying either
on the interface parallel to the x- or y-axis and corner nodes. In the first
case, fine grid and coarse grid interface nodes have three empty popula-
tions not updated by the standard propagation. In the latter case, the con-
vex corner node (fine grid) has five empty populations, while the concave
corner node (coarse grid) has only one. So the total number of unknowns
is always six for any pair of coupling nodes. In order to determine them,
we equate six out of the nine scaled moments listed in the table. How-
ever, the six moments can not be chosen arbitrarily, if the resulting linear
system should be uniquely solvable. The subsequent choice satisfies this
requirement.
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Type of interface node Equalized scaled moments

Horizontal (‖ x-axis) Vx,Vy,
y,
xy,�y,�

Vertical (‖ y-axis) Vx,Vy,
x,
xy,�x,�

Corner Vx,Vy,
x,
y,
xy,�

N.B.: 
x :=h−1〈Fh,mσx 〉, �x :=h−2〈Fh,mφx 〉 etc.

To be more concrete we give here the coupling conditions on the
boundaries parallel to the x-axis. The notation is chosen in direct analogy
to the D1P3 coupling as in Eq. (13); remember that the swung dash over
G indicates time interpolation.

(i) 〈G̃η,mvx 〉 = 〈Kη,mvx 〉 (ii) 〈G̃η,mvy 〉=〈Kη,mvy 〉,
(iii) 1

rη
〈G̃η,mσy 〉 = 1

η
〈Kη,mσy 〉 (iv) 1

rη
〈G̃η,mσxy 〉= 1

η
〈Kη,mσxy 〉,

(v) 1
(rη)2

〈G̃η,mφy 〉= 1
η2 〈Kη,mφy 〉 (vi) 1

(rη)3
〈G̃η,mψ 〉= 1

η3 〈Kη,mψ 〉.

Multiplying these scalar products out and sorting empty and known pop-
ulations on the left and right-hand side, respectively, yields a 6 × 6 linear
system being the counterpart of Eq. (14). Notice that the system matrix
depends only on the type of the interface node (more exactly on which
of the populations are empty) and is independent of the time iteration.
Therefore its inverse can be computed once and for all before the LB algo-
rithm starts.

The equating of the scaled moments is heuristically justified, if we
assume the solution of the target equation sufficiently smooth, such that
the given macroscopic quantities are continuous at the artificial interfaces.

It is remarkable, that the LB algorithm needs two more coupling con-
ditions than we would obtain by a variational formulation of the target
problem (6 versus 4, which are given by the continuity of both compo-
nents of v and the normal stress, i.e. the stress tensor matrix times the nor-
mal vector of the interface). This is in opposition to the preceding D1P3
example, where both the target equation and the LB algorithm require two
coupling conditions.

Finally, let us report a test problem provided by the decaying eigen-
mode of the Stokes operator (see Fig. 6, left). The convergence plot con-
firms numerically, that the LB scheme on the coupled grid is also of
second order.

Because of grid-sampling effects similar to benchmark II in Section 3,
we obtain also initial total velocities with respect to the x- and y-direction,
that are slightly different from the analytic value 0 (e.g. around 1.66×10−3
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for the first mesh). This effect reduces when the grid is refined. As long
as the damping is perceptible, the total velocity components decrease with
time. Notice, that the total x- resp. y-velocity is computed as the sum of
Vx resp. Vy (cf. Eq. (15)) over all nodes of the coarse and fine subgrid
multiplied by the squared grid spacing.

In this example, the total mass (total pressure which is the sum of P
over all nodes) has initially a magnitude of 10−17. However, a very slow
increase is observed, that does not occur on a uniform grid.

5. APPENDIX A: CONSISTENCY OF THE LATTICE-BOLTZMANN

ALGORITHM

Here we are going to justify the convergence results formulated in
Eqs. (9)–(11) without entering into all details. The proof is based upon a
prediction function F̂h, that approximates or “predicts” the evolution of the
population function Fh with a certain order of accuracy. A formal asymp-
totic expansion (cf. Eq. (2)) reveals, how the prediction function has to
be chosen. However we prefer here a converse presentation, i.e. we indi-
cate the construction without any further motivation and verify afterwards
that it has the required properties. Afore, a preliminary consideration is
necessary.

Let ϕ be a function depending on time and space. We want to
approximate ϕ(t + h2, x+ sh) by a truncated Taylor expansion. Therefore
assume that ϕ is at least four times differentiable. If we rearrange the trun-
cated Taylor series, such that terms of equal power in h are collected,
and keep explicitly only those terms being of order three or less in h, we
obtain

ϕ(t+h2, x+ sh)=
3∑

α=0

hα Tα(∂t , s∂x)ϕ(t, x)+O(h4).

This relation defines the bivariate polynomials Tα with 0�α�3. An easy
computation yields

T0(ϑ, ς)=1, T2(ϑ, ς)=ϑ+ 1
2ς

2,

T1(ϑ, ς)=ς, T3(ϑ, ς)=ςϑ+ 1
6ς

3.

May now u be the solution of the initial value problem (3) for the advec-
tion-diffusion equation, where we set q = 0 to simplify the computations.
We suppose u to be sufficiently smooth, such that the following functions
are reasonably defined.
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f(0)(t, x, s):=u(t, x)ws ,
f(1)(t, x, s):=au(t, x)θsws − 1

ω
T1(∂t , s∂x)f(0)(t, x, s),

f(2)(t, x, s):=− 1
ω

{
T1(∂t , s∂x)f(1)(t, x, s)+T2(∂t , s∂x)f(0)(t, x, s)

}
,

f(3)(t, x, s):=− 1
ω

{
T1(∂t , s∂x)f(2)+T2(∂t , s∂x)f(1)+T3(∂t , s∂x)f(0)

}
(t,x,s)

.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(16)

For later purposes let us already compute f(1), f(2) more explicitly. As
abbreviation, it is convenient to use the macroscopic quantities f, g

defined by Eqs. (5) and (6), respectively. Resolving the recursive definition
of f(1) leads to:

f(1)
(16)= auθsw − 1

ω
s∂xuw = (

au− 1
ωθ
∂xu

)
θsw

(7)= (
au− (ν+ 1

2θ )∂xu
)
θsw

(5)= f θsw.

Similarly we obtain:

−ωf(2)
(16)= s∂xf θsw +

(
∂t + 1

2 s2∂2
x

)
uw

(5)= ∂x
(
au− (ν+ 1

2θ )∂
2
xu

)
θs2w + ∂tuw + 1

2θ ∂
2
xuθs2w

(3)= ∂x
(
au−ν∂2

xu
)
θs2w − (

a∂xu−ν∂2
xu

)
w

= ∂x
(
au−ν∂2

xu
)
θ(s2 − 1

θ
)w

(6)= gθ(s2 − 1
θ
)w.

The calculations are summarized by

f(1)(t, x)=f (t, x)θsw, f(2)(t, x)=− 1
ω
g(t, x)θ(s2 − 1

θ
)w. (17)

We refer to f(α) (0�α�3) as the α’th asymptotic order of the extended pre-
diction function

f̂h := f(0)+hf(1)+h2f(2)+h3f(3).

Now we are able to define the (discrete) prediction function by

F̂h(m, j, s) := f̂h(mh2, jh, s)

for admissible time and space indices m,j . The assertion we want to prove
in the sequel is, that F̂h satisfies the LB equation approximately, i.e. with a



68 Rheinländer

residual vanishing quadratically with the discretization parameter h. More
exactly:

1
h2

{
F̂h(n, i, s)− F̂h(n−1, i− s, s)−ω[(

Eh− I)F̂h(n−1, i− s)]
s

}
!=O(h2).

(18)

Expressing this equation in terms of f̂h, where we set for shortness

(n−1)h2 ↔ t, (i− s)h↔x,

we obtain equivalently:

1
h2

{
f̂h(t+h2, x+ sh, s)− f̂h(t, x, s)−ω

[
(Eh− I )f̂h(t, x)

]
s

}
!=O(h2). (19)

Notice, that the factor 1/h2 evokes the affinity to a differential equa-
tion. As h2 corresponds to the time increment, the difference of the shifted
and unshifted prediction function divided by h2 approximates the convec-
tive derivative of f̂h in the direction of s, i.e. ∂t f̂h+h−1s∂x f̂h. Replacing for-
mally the difference quotient by the convective derivative, yields a system
of partial differential equations, that are singularly scaled because of the
factors h−1 and h−2 appearing in front of the spatial derivative and the
collision term, respectively. Of course, this PDE system has many things
in common with the algorithm and is also of interest by its own (see ref.
11 in the context of the D2P9 model and ref. 12). This observation sug-
gests, that it is advantageous for theoretical investigations not to write the
LB equation in the form (1), as it is used for implementations. An impor-
tant consequence of this is mentioned below.

In order to verify (19) let us first calculate the mass-moment and
the equilibrium of f̂h. Writing f(1), f(3) in terms of f(0), respectively, u, we
observe that all addends contain either s or s3 = s. As 〈s,w〉=∑

s∈S sws =
0, the mass-moments of f(1), f(3) must vanish. Since (s2 − 1

θ
)w is orthog-

onal to 1, the mass-moment of the second asymptotic order f(2) vanishes
too. This result is not at all obvious, if we take for f(2) its definition in (16)
instead of its representation in (17). We have made essential use of u being
a solution of the diffusion-advection equation and of the ν-ω relation (7)
in order to derive (17). Thus we get

〈f̂h,1〉=
3∑

α=0

hα〈f(α),1〉=〈f(0),1〉=u, (20)
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which implies

[
Eh f̂h(t, x)

]
s

:= 〈f̂h(t, x),1〉ws +ha〈f̂h(t, x),1〉θsws
= u(t, x)ws +hau(t, x)θsws .

Comparing this with the definition of the asymptotic orders in (16), we are
led to the subsequent representation of the extended prediction function

f̂h(t, x, s)=
[
Eh f̂h(t, x)

]
s
− 1
ω

3∑

α=1

hα
α∑

β=1

Tβ(∂t , s∂x)f(α−β)(t, x, s),

which immediately yields

ω
[
(Eh− I )f̂h(t, x)

]
s
=

3∑

α=1

hα
α∑

β=1

Tβ(∂t , s∂x)f(α−β)(t, x, s) . (21)

Let us resort to our preliminary consideration to transform the temporar-
ily and spatially shifted f̂h in (19). By the definition of the Tα’s and of f̂h
we find

f̂h(t+h2, x+ sh, s) =
3∑

α=0

hα Tα(∂t , s∂x)f̂h(t, x, s)+O(h4)

=
3∑

α=0

hα
α∑

β=0

Tβ(∂t , s∂x)f(α−β)(t, x, s)+O(h4).

Combining this with (21) gives

f̂h(t+h2, x+ sh, s)−ω[
(Eh− I )f̂h(t, x)

]

=
3∑

α=0

hα
0∑

β=0

Tβ(∂t , s∂x)f(α−β)(t, x, s)+O(h4)

=
3∑

α=0

hαf(α)(t, x, s)+O(h4)= f̂h(t, x, s)+O(h4) .

Since the obtained f̂h(t, x, s) is canceled by the remaining −f̂h(t, x, s) of
Eq. (19), we see, that its left-hand side simplifies to O(h4), which gives an
O(h2) term after the division by h2. This proves Eq. (19) and hence (18).
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Thanks to (17) we see, that the initialization (8) is just f(0)(0, ih)+
hf(1)(0, ih)+ h2f(2)(0, ih). If the population function Fh of the LB algo-
rithm is initialized in such a way, that the initial deviation between the
population and the prediction function is of second-order, i.e. Fh(0, ·, ·)−
F̂h(0, ·, ·)=O(h2), then the prediction function F̂h is not only second-order
consistent to the LB equation but to the whole LB algorithm. Observe,
that the initialization by (8) is of second-order, if it takes at least the
zeroth and first-order term into account.

Now, the LB algorithm is stable provided the parameters are rea-
sonably chosen (0 < ω < 2 and CFL condition, i.e. 1 � |a|/grid speed =
|a|/(h/h2)= |a|h). It is well known that consistency and stability imply
together convergence. In fact, if we write the LB equation in the form of
(18), the stability constant turns out to be independent of the grid spacing
h. Therefore the order of consistency is equal to the order of the devia-
tion Fh(0, ·, ·)− F̂h(0, ·, ·). So we obtain, that the prediction function F̂h
approximates the population function Fh with second-order accuracy.

Fh(n, i, s)= F̂h(n, i, s)+O(h2)≡ f̂h(nh2, ih, s)+O(h2). (22)

Notice that we could a posteriori drop the second and third asymptotic
order in the definition of f̂h; we need them in our argument only for tech-
nical reasons to obtain the desired consistency order. Hence h2f(2)+h3f(3)

can now be absorbed into the O(h2) term and (22) remains correct if we
replace F̂h, f̂h by F̃h, f̃h with

F̃h(n, i, s) := f̃h(nh2, ih, s) := f(0)(nh2, ih, s)+hf(1)(nh2, ih, s) .

Summing (22) over s shows, that the mass-moment of the population
function converges quadratically to the solution u of the advection-diffu-
sion equation, i.e.

〈Fh(n, i),1〉=
∑

s∈S
f̂h(nh2, ih, s)+O(h2)=u(nh2, ih, s)+O(h2) .

Using the second equation of (23) (Section 6), we deduce analogously for
the first moment and the flux-like quantity f defined in (5)

1
h
〈Fh(n, i),s〉= 1

h

〈f̂h(nh2,ih),s〉
︷ ︸︸ ︷
∑

s∈S
s f̂h(nh2, ih, s)+ 1

h
O(h2)=f (nh2, ih, s)+O(h).
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Actually, this result can be improved, if we construct a prediction func-
tion, of at least third-order consistency. Together with the stability, this
yields a quadratic convergence of the first moment divided by h, which is
in accordance with numerical experiments. If we increase further the con-
sistency order of the prediction function, what requires more regularity,
then (11) can be proved in the same manner.

6. APPENDIX B: CONSISTENCY OF THE COUPLING ALGORITHM

Similarly to the previous section we want to construct a prediction
function for the LB algorithm on coupled grids. More precisely, we will
have separate prediction functions for the population function on each
subgrid.

With exception of the four coupling nodes the LB algorithm on the
coupled grids is equal to the standard LB algorithm on a uniform grid.
Therefore it is natural, if we try the same ansatz as on the uniform grid,
setting however h = rη on the coarse submesh and h = η on the fine
submesh.

Ĝη(m, j, s) := f̂rη(mr2η2, jrη, s)=
3∑

α=0
f(α)(mr2η2, jrη, s) (rη)α,

K̂η(m, j, s) := f̂η(mη2, jη, s) =
3∑

α=0
f(α)(mη2, jη, s) ηα.

The definition of the asymptotic orders f(α) is the same as in Section 5 (see
(16) and (17)). Note, that an iteration on the coarse grid corresponds to a
time increment of r2η2, while the time advances on the fine grid only by
η2 after every time step.

We can repeat the computation of the preceeding section to show,
that the two prediction functions Ĝη, K̂η satisfy the LB equation with a
residual of order O(r2η2), respectively, O(η2). As r is a fixed quantity
independent of η, the residual is actually in both cases of order O(η2).

Let us now turn to the coupling conditions. Since these are formu-
lated by equalizing certain scaled moments (in our case the zeroth and
first one), the specific s-dependence of the asymptotic orders plays a cen-
tral role. From Eq. (17) we can easily read off

f(0)∝w, f(1)∝sw, f(2)∝ (s2 − 1
θ
)w.

It is a crucial fact, that the three vectors {w, sw, (s2 − 1
θ
)w}⊂F occurring

in the proportionality relations form together with the set {1, s, s2 − 1
θ
}⊂

F a bi-orthogonal system with
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〈w, 1〉=1, 〈sw, s〉= 1
θ
,

〈
(s2 − 1

θ
)w, s2 − 1

θ

〉
= 1
θ

− 1
θ2 .

In particular this implies:

〈f(0), 1〉=u 〈f(0), s〉=0 〈f(0), s2 − 1
θ
〉=0,

〈f(1), 1〉=0 〈f(1), s〉=f 〈f(1), s2 − 1
θ
〉=0,

〈f(2), 1〉=0 〈f(2), s〉=0 〈f(2), s2 − 1
θ
〉=− 1

ω
(1− θ)g.

Furthermore we even have 〈f(3),1〉 = 〈f(3),s2 − 1
θ
〉 = 0, because f(3) is only

composed of terms containing s and s3 =s, that are orthogonal to 1, s2 −
1
θ

. These results can be summarized in the subsequent form, that is
exploited further below.

〈f̂h,1〉=u, 〈f̂h,s〉=hf +O(h3),
〈
f̂h,s2 − 1

θ

〉
=−h2 1

ω
(1− θ)g. (23)

After these preparations, we claim, that the first coupling condition is
satisfied by the two prediction functions with a residual of fourth-order,
whereas the second coupling condition produces a residual of second-
order. So the following equations are to be verified (cf. Eq. (13)):

〈
r2−�
r2 Ĝη(n−1, I ζη ) + �

r2 Ĝη(n, I
ζ
η ) − K̂η

(
r2(n−1)+�, J ζη

)
, 1

〉
!= O(η4),

(24)

1
rη

〈
r2−�
r2 Ĝη(n−1, I ζη )+ �

r2 Ĝη(n, I
ζ
η )− rK̂η

(
r2(n−1)+�, J ζη ,

)
,s

〉
!= O(η2).

(25)

Recall, that we denote by I ζη , J
ζ
η the indices of the two coupling nodes at

ζ belonging to the coarse, respectively, fine grid. The time step performed
on the coarse grid is indexed by n, while the iterations, which have to be
done on the fine grid in between two iterations on the coarse grid to reach
the same physical time, are counted by �∈{1, . . . , r2}.

Before we substitute in the asserted equations the discrete prediction
functions Ĝη and K̂η by the extended prediction function, let us shortcut
t := (n− 1)r2η2 + �η2. Furthermore remember, that the spatial indices of
the coupling nodes have been chosen in such a way that rηI ζη = ηJ ζη = ζ .
The time interpolation on the coarse grid appearing in both conditions
transforms into:
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r2−�
r2 Ĝη(n−1, I ζη )+ �

r2 Ĝη(n, I
ζ
η )

= r2−�
r2 f̂rη(t−�η2, ζ )− �

r2 f̂rη
(
t+ (r2 −�)η2, ζ

)

= f̂rη(t, ζ )+O(η4). (26)

Let us consider the first coupling condition, Eq. (24), concerning the mass
moment. For clarity we drop the arguments (t, ζ ). Inserting (26), the
left-hand side of (24) becomes:

〈
f̂rη+O(η4) − f̂η, 1

〉 = 〈f̂rη, 1〉 − 〈f̂η, 1〉 + O(η4)

= u − u + O(η4) = O(η4).

In the same way we proceed with the second coupling equation (25) con-
cerning the first moment:

1
rη

〈
f̂rη + O(η4) − r f̂η, s

〉 = 1
rη

(〈f̂rη, s〉 − r〈f̂η, s〉 + O(η4)
)

= f +O(r2η2) − f + 1
r
O(η2) + 1

r
O(η3)

= O(η2).

So we find (24) and (25) satisfied essentially due to an algebraic property,
namely the bi-orthogonality relations between the two F-generating sys-
tems. Altogether, the coupling is therefore of second-order.

The consistency check, we have done so far, is the first step towards
a convergence proof of the LB algorithm on coupled grids. Starting from
the target problem we want to solve, we have constructed prediction func-
tions, that fulfill approximately all equations of the LB algorithm with a
residual being at least of order O(η2). If the algorithm is stable, then the
prediction functions approximate moreover the populations on both grids
with second-order accuracy, provided that the initial deviation is also of
second-order. This would entail immediately the convergence of the algo-
rithm. However, the stability proof is more complicated than in the case
of uniform grids and remains an open problem for the general case, even
if the examples suggest a good behavior.

Finally, it should be remarked, that the naive approach mentioned
in the introduction, where corresponding populations of the coarse and
fine grid are simply identified, is only of first-order. At the left interface
ζ this would mean concretely for instance: G̃� = K� and K⊕ = G̃⊕. The
poor behavior can be understood by means of the prediction functions.
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As we assume the asymptotic expansion (22) to be valid mutatis mutan-
dis inside the interior of each subdomain, it must also hold by continuity
at the interface points:

Gη= f(0)+ rηf(1)+O(η2) ,

Kη = f(0)+ ηf(1)+ O(η2) .

For ease of notation, we have omitted the arguments. Obviously, the pop-
ulations on the coarse and fine grid differ in the first-order by the factor
r. Hence we commit an error of order O(η), if we “copy” the values of
corresponding populations from the coarse to the fine grid and vice versa
for r �=1.
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